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Abstract

This paper describes rsyslog design and internals. It is created to
facilitate a discussion about the implementation of ”batched queue pro-
cessing”. As such, it does not describe the full design of rsyslog but rather
those elements that are relevant to queues. However, the document may
be expanded in the future. This is work in progress and should be con-
sidered with care. It is NOT updated during all phases of development.
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1 Preliminaries

1.1 On the Use of English

I ventured to write this book in English because ...
it will be more easily read in poor English,

than in good German by 90% of my intended readers.
— HANS J. STETTER, Analysis of Discretization Methods for

Ordinary Differential Equations (1973)

There is not much I could add to Mr. Stetter’s thought, except, maybe, that
the number to quote probably tends more to 99% in this case than to the 90%
Mr. Stetter notes. So please pardon those errors in language use that I have not
yet been able to fix or even see. Suggestions for corrections and improvements
are always welcome.

1.2 Notational Conventions

In general, in rsyslog there exists single objects o, which are used to build larger
sets O, which form a superset O of all those objects that exist at a given time
inside a running instance of rsyslog. As seen above, single objects are always
described by lower case letters (o), larger sets by upper case letters (O) and the
“all-sets” in caligraphic letters (O). Often, objects Oi, i ∈ N, i ≤ |O| partition
O, but this is not necessarily the case.

1.3 Definitions

1.3.1 Sudden Fatal Failure

As sudden fatal failure is one that occurs at some instant and causes Complete
loss of processing capabilities. The two major cases are a sudden power loss or
a “kill -9” of the process. There are more exotic cases, too, like disasters.

One may argue that it is possible to protect against many sudden fatal failure
cases. For example, using an uninterruptable power supply (UPS) will prevent
a sudden power loss. While this is true in most cases, it does not hold if looked
very closely: in the case of the UPS, for example, a failure in the UPS itself may
cause a sudden power loss, which can not be mitigated. Well, actually there can
be several layers of mitigation, but always one more potential failure scenario
remains. So it is not possible to totally solve the issue.



1 PRELIMINARIES 3

The concept of “sudden fatal failure” now covers all these rest risk that
result in termiantion of rsyslogd without the ability execute any code before
this happens. This is a very important concept in regard to audit-gradeness.

1.3.2 Audit Grade

In the context of this document, “audit grade” means that a subsystem never
loses a message that it has taken responsibility for, not even in cases of sudden
fatal failures. The only limit in this restriction is that a subsystem does not
guarantee message survival if the subsytem at large is being destroyed (e.g.
during a disaster) or some of its components are not of audit-grade. This draws
a fine limitation on the audit-grade of a subsystem.

For example, the rsyslog queue subsystem receives messages and acknowl-
edges them to the submitter (e.g. an input), when they have been enqueued
in the storage system. If the queue system is configured to provide audit-grade
operation1, the queue relies on the storage subsystem to work properly. If, for
example, a disk read error occurs, the message may no longer be readable from
the disk and as such is lost. The root cause here is that the disk subsystem was
not of audit grade, because it otherwise would not have lost the message. So in
this case the queue code is of audit grade, but the one of its components, the
disk subsytem, was not. So the overall system is not of audit grade.

To simplify talking about the audit-gradness of several subsytems, we assume
that all of their subsystems are also of audit grade. In an actual deployment,
however, this means the the system designer must carefully select audit-grade
subsystems. Overlooking a single non-audit-grade component will make the
whole system of not audit grade quality.

Please note that it can be rather tricky to ensure a complete system is of
audit grade. A border case is main memory integrity. Even with error-correcting
memory, there may situations arise where a memory error occurs (probably due
to a very unlikely series of well-hitting cosmic rays) that is unrecoverable. At
this point, system integrity is at risk. The only real solution is to immediately
shut down the system and restart it (without giving any process a chance to
execute). Note, however, that in an extreme view, an operating system routine
that does so can also be considered dangerous, as memory in use by this routine
might be affected by the malfunction. We could extend this scenario and further
complicate it, but that goes beyond the scope of this paper. The example was
primarily meant to show how subtle audit-grade reliability is.

In rsyslog, we currently use a slightly relaxed consistency condition for mes- duplication
permittedsage integrity inside an audit-grade subsystem. While we do not accept message

loss, we permit slight message duplication, but only in exceptional cases. This
is permitted because, with proper message generation, the dulication problem
can be easily fixed at the end-to-end layer. For example, the original sender
can include a UUID, which can be used to sort out duplicates at the final des-
tination. Insisting on not allowing duplication complicates matters and is often
impossible with today’s logging protocols. So, for the time being, we aim at this
relaxed criteria, which is hard enough to achive. After we have achieved that

1Audit-grade queue operation is considerably slower than regular operations, as such this
mode is not enabled by default. Most installations will never need a completely audit-grade
queue



2 OVERALL DESIGN 4

goal, we may further try to solve the duplicaton problem. Some hooks already
exist. But we do not guarantee such an effort will be made any time soon.

2 Overall Design

From a high-level prespective, rsyslogd is “just” a high-performance message
router. It accepts messages from various sources, applies user-configured filters
to them, and routes potentially transformed messages to destinations based on
these filters.

3 Objects

3.1 Plugins

Plugins provide code potentially written by a third party to extend rsyslog.
Conceptually, a plugin is a tuple of callable functions (φ1, φ2, . . .) which

implement an interface. There are three different types of plugins: input, output
and library. The plugin type denotes the primary interface implemented by the
plugin. Additional interfaces may be implemented2.

In the context of this paper, the output plugin interface is most important.
It implements three entry points:

doAction() is used to submit messages to the output plugin. The entry point
may or may not commit the messages to their ultimate destination.

beginTransaction() is used to inform the plugin that a new transaction be-
gins. It must prepare for processing.

endTransaction() is indicated that the upper layer needs to close the trans-
action. If there is any uncommited data left, it must be commited or rolled
back.

Every instance of an output plugin is guaranteed not to be called concur-
rently by multiple threads. Further, no context switch will happen between calls
to doAction() and endTransaction().

3.2 State Sets

Several object have associated state based on a specific state set. These state
sets are described together with the objects.

As a general rule, individual state is associated with all instances o of a class
of objects. This state is called the object’s state component s. If we want to state compo-

nentobtain an object’s state, we write S(o). Please note that S(o) is only defined
for those objects that have a state component.

2This is not yet done in plugins, but is possible and assumed to be done at a later point
in time
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3.3 Messages

A message m represents a a single syslog message inside the system. It is a
tuple of attributes. Some of these attributes directly orginate from the message
content, some others are meta-information taken from the context. For example,
there is an meta-attribute “time of reception” which conveys when the message
was received by rsyslog’s input subsystem. We do not list attributes here, as
there are many and it is not of importance which exactly they are.

The set M is composed of all messages that exist at a given time inside
rsyslog.

3.4 Queue

A queue
Q = (C,Φ,M)

is a triplet of a set of configuration parameters C, a set of callbacks Φ and a set
of messages M ⊆M.

If we need to obtain the set of message from a queue, we write M(Q). The
elements of the set of configuration parameters are written as Cparam where
param is an abbreviation of the parameter’s meaning. To obtain a specific
parameter from a queue, we write Cparam(Q). The most important elements of
C are:

Ctype which denotes the queue implementation type. Most importantly, this
selects from a set of queue drivers (for example disk-only or in-memory driver),
which affects the basic operation of the queue instance.

CmMsg which denotes the upper bound on the cardinality of M .

CmBatch which denotes the upper bound of the cardinality of message batches
created for this queue.

Be Q = {Qm, Q1, Q2, . . . , Q|A|} the set of all queues that exist inside rsyslog
after the configuration file has been processed, with |Q| = |A|+ 1.

Then

M0 =M\
|Q|⋃
i=1

Qi(M)

is the set of non-queued messages. The messages have either never been en- at-risk-set
queued or have been dequeued but not finally been processed. This set repre-
sents the messages that may potentially be lost during an unclean shutdown of
rsyslogd. This is why I call this set the “at-risk-set”.

3.5 Batches

A batch represents multiple processable messages. It is a unit of processing
inside rsyslog’s output system. Batches are used to dequeue a number of mes-
sages from a queue and then submit them to the lower action layer. Batches are
natural transaction boundaries, in the sense that multiple output transactions
may be done on the messages inside a batch, but each transaction must end at
the end of the batch. A batch is always associated to a specific queue Q.
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Figure 1: batch message processing states

A batch
B = (b1, b2, . . . , bn)

is a n-tuple of processable messages processable
message

b = (m, s)

which are an ordered pair of a message m and an associated processing state
s. To denote the n-th message inside the batch, we write m(bn), to denote the
status component of the n-th message, we write S(bn).

The state set for the processing states is defined as follows:

SB = {rdy, bad, sub, disc}

With the semantics of the various states being the following:

State Semantics
rdy ready for processing
bad this message triggered an unrecoverable failure in action

processing and must not be resubmitted to this action
sub message submitted for processsing, result yet unknown
disc action sucessfully processed, but must not be submitted

to any further action in action unit

The associated state diagram is shown in figure 1 on page 6.
Batch sizes vary. The actual cardinality is a function of the cardinality of

M(Q) at the time of batch creation and the queue configuration:

1 ≤ |B| ≤ max(CmBatch(Q), |M(Q)|)
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3.6 Action Unit

An action unit

u = (f, a1, . . . , an), ai ∈ A for i ∈ N, i ≤ n

is a tuple consisting of a filter function f and n ∈ N actions. Does rsyslog still
support nonsense action units with n = 0? - check!

3.7 Action

An action
a = (aC , aψ)

is an ordered pair of a tuple of configuration attributes aC , and a tuple of
processing functions aψ. Be the set A composed of all actions that exist in
rsyslog after the configuration file has been processed.

4 Processing

4.1 Object States

Various objects keep state. Some of these objects, like messages, batches and
actions seem to share state. However, thinking about shared state leads to
very complex setup. As such, state is modelled for each object o individually.
Instead, the state function SO(o) can be used to obtain an obtain an individual
objects state. That state can be used to modify the state diagrams of the other
objects with which relationships exist.

4.1.1 Actions

Actions are provided by output plugins. An action enables the engine to write
messages to some destination. It is important to note that “destination” is a
very broad abstraction. A destination may be a file inside a local or remote file
system, a database table or a remote syslog server in another network.

Actions are transactional in the following sense: more than one message can
be submitted to an action. The action does not necessarily process the submit-
ted messages unless the caller ends the transaction. However, the action itself
may also end the transaction and notify the caller. This is not considered an
error condition and must be handled gracefully by the caller. If a transaction
aborts, the caller must assume that none of the elements submitted since the
begin of transaction have been processed. The action will try to backout any-
thing that was already processed at the time the transaction failed. However,
not all outputs work on actually transactional destination. As such, an action
is permitted not to backout incomplete interim results. As such, after a trans-
action abort, some message duplication may occur. We call this the relaxed
integrity condition for actions.

An output transaction is started by calling beginTransaction() either ex-
plicitely or implicitely by a call to doAction() without calling beginTransaction()
before. Then, one or more calls to doAction() follow. When the caller intends
to finish the transaction, it calls endTransaction(). However, the transaction
may also be terminated from the action itself in response to a doAction() call.



4 PROCESSING 8

Mathematically, an action transaction builds a totally ordered set of uncom-
mitted messages Mu. The order relation is defined over the sequence in which
messages are being provided to doAction(). At any time a commit is attempted,
the full set Mu is committed and may either succeeed completely or not at all
(in the sense of the relaxed integrity condition described above).

A commit is attempted when

1. the caller decides to call endTransaction()

2. or earlier if the action decides it needs to commit now (e.g. because of
buffers filling up).

In the seconds case, the action may decide to commit all message but the
current one or all (this is depending on action logic). So if the action decideds to
commit a transaction before the caller calls endTransaction(), a set of commited
messages Mc is build and Mu is modified. Be n the n-th iterated doAction()
call and mn the current message of this call, then the sets are build as follows:

if action commits mn then
Mc = Mu ∪mn

Mu = ∅
else
Mc = Mu

Mu = {mn}
end if

In other words, if anything is committed early, it is always the full set Mu,
with or without the current message. The caller needs to know which messages
are already commited. As doAction() finishes one transaction and starts a new
one in a single call, we can not use action state the let the caller know this
happened. So we use our above finding and just convey back if the transacton
is still continuing or the current message or all others before it were committed.
The caller must then act accordingly. Please note that when an error happens,
the whole transaction must still be considered failed. As such, “partial commit”
states need not to be mixed with failure states.

Please note that the above method leaves a small potential issue unad-
dressed: if the action does an early commit of Mu \mn, an error happens when
adding mn to the new Mu (like running out of resources), the action would need
to convey both the successful transaction as well as the failure state. This is
not possible with the current interface. We could use callbacks to provide such
notification, but this complicates the code. So, if that situaton arises, the action
must temporarily buffer the error condition and convey it as part of either the
next doAction() call or during endTransation() processing. This can be done,
for example, by advancing its internal state accordingly.

The state set for a actions is defined as follows:

SA = {rdy, itx, comm, rtry, susp, died}

With the semantics of the various states being the following:
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Figure 2: Action State Diagram

State Semantics
rdy ready, waiting for transaction begin
itx in transaction, accept more data
comm transaction finished
rtry action failed but may be able to recover
susp action currently defunctional until timeout expires
died unrecoverable error condition occured, no longer usable

In the associated state diagram in figure 2, we do not include the died state,
because it is entered whenever a totally unrecoverable error state may occur.
This is a very exceptional incident (which most output plugins do not even
support), so we have kept the diagram simple.

Note well that the state diagram describes the action state. It does not
describe the transaction state. While action- and transaction state are closely
related to each other, they are different entities.

The return code of doAction() and endTransaction() is used to convey the
transaction state. As such, it is a function of the actions’s current state after
processing the request. The mapping is as shown below:

State Return Code (RS RET . . . )
rdy OK
itx COMMITTED (if there was an auto-commit without mn)

DEFER COMMIT (if there was no auto-commit)
comm internal state, not to be exposed to upper layer
rtry SUSPENDED (new code needed)
susp SUSPENDED
died DISABLED
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For the rest of this document, let’s assume there is a function getReturn-
Code() that implements this mapping.

It is important to think about how retries are handled. There is a user-
configured per-action upper number of retries Cr and retry interval Ci. In
rsyslog v3, there is no concept of output transactions. As such, only single
messages are processed. When a temporary action failure occurs, the action is
re-tried Cr times, where the action processing thread is waiting in a sleep() Ci
operating system API call3. If the action succeeds during the retry processing,
everything continues as usual. If it does not succeed, two things happen:

• the message is flagged as “action permanent failure” (what may trigger
backup processing)

• the action is actually suspended for Ci seconds

If then a new message is sent to the action, and Ci seconds have not yet elapsed,
the action is flagged as having failed without being re-tried again4. This is done
in an effort to reduce resource utilization and prevent the system from slowing
down e.g. by too-many retries to a remote server that went offline.

With transactional output mode in rsyslog v4, the logic above can no longer
work. First of all, retrying single actions does not help, because all of the
current transaction needs to be resubmitted. As such, the upper layers need to
be notified of failure. Then, they need to resubmit the batch. In that design,
the lower layer needs to return immediately after detecting the failure. Recovery
handling is now to be done when the next transaction is started. However, we
must make sure that we do not do excessive retries. So retry processing is only
to be carried out if it was not tried less than Ci seconds ago.

The required functionality can be implemeted by a prepareAction function
that readies the action for processing if there is need to do so. That function
is then called in all entry points before anything else is done. Then, actual
processing is carried out and the resulting action state be used to generate the
return code for the upper-layer caller. Find below a rough pseudocode to do so:

def prepareAct ion ( ) :
i f s t a t e == r t r y :

try recovery ( ad jus t s t a t e ac co rd ing ly )
i f s t a t e == rdy :

beg inTransact ion ( ) [ output p lug in ]

def processMessage ( message ) :
prepareAct ion ( )
i f s t a t e == i t x

doAction ( message ) [ output p lug in ]
return getReturnCode ( )

def doEndTransaction ( ) :
prepareAct ion ( )

3a suitable API is used, not sleep() itself
4During the analysis for this paper, it was seen that actually Cr retries are attempted in

v3, but each of them will never actually re-try the action. This is a software bug, which does
not cause any harm and thus will not be fixed in v3. The new implementation in v4 will
obviously not inherit this problem
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i f s t a t e == i t x
endTransact ion ( ) ; [ output p lug in ]

return getReturnCode ( )

4.2 Output Subsystem Layers

The rsyslog engine is organized in layers, where each layer is represented by the
dominating object:

If looking at the data flow, a queue dequeues batches of messages, which are
than run through a generic action system and put into output plugins. Note
that on the batch layer, only batches are supported as units of work, whereas the
action layer is message-oriented but supports transactions of multiple messages.
This is done by indicating when a transaction necessarily needs to end (that
point being the end of batch from the batch layer).

The plugins can be written by third parties and are roughly comparable to
minidrivers. The generic action system provides all complexity of action pro-
cessing wheras the output plugin provides a limited set of callbacks that enable
the generic framework to talk to the actual destination system. As such, writing
outputs is a very simple task. However, rsyslog does not limit the creation of
very complex outputs, which may be able to offer superior performance for some
destinations.

4.3 Output Failure

4.3.1 Cases

When an output action is called, it may encounter a failure condition. In general,
there are two different cases:

1. action caused failures

2. message-content caused failures

.
Failures rooted in the action are things like broken network connections, file

systems run out of space or database servers that are down. Most importantly,
the failure is not related to message content. As such, it is appropriate to
retry the action with the same message until it finally succeeds (assuming that
someone restores the system in question to proper operation). We can not
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expect that the problem is cleared just by discarding the current message and
re-trying with the next one.

In my view, action caused failures are the far majority of all failures. For
rsyslog versions 3 and below, all rsyslog-provided plugins consider failures to be
action-caused and thus potentially recoverable by simple retry. With the only
exception being fatal error conditions that render the whole action unusable.

David Lang pointed out, that there may also exist error conditions that are
not caused by the action (or the subsystem it talks to) itself, but rather by
message data. He provided the following samples where message content can
cause permanent issues with action execution:

• unicode text causing grief

• dynafile hits a read-only file

• basicly data-driven things that trigger bugs in the message delivery mech-
anism in some form.

As David Lang said “In an ideal world these would never happen, but for
most output types I can think of some form of corrupt input that could cause
that message to fail.”. So this class of failure conditions actually exists. No
matter how often the action retry mechanism is called, it will never succeeds
(one may argue that the read-only dynafile is fixable, but we could replace that
sample with an invalidly generated filename). The proper cure for these actions
is to find the offending one and discard it.

In conclusion, actions need to return different error states for these two dif-
ferent types of failures. Traditionally, RS RET SUSPENDED is returned when
an action specific failure is hit. Most existing plugins also do this if a message-
related failure occured, simply because they did not yet know that this situation
exists. However, plugins also return different error codes, and at least these can
be treated to mean message-permanent failures. To support this, a change to
plugins is still required, because many simple return SUSPENDED state if any-
thing went wrong (replacing the real error condition with SUSPENDED). A
dedicated PROBABLE INVALID MSG return state is probably useful so that
an output plugin can convey back that it consideres the message to be bad.
On the other hand, this implies that the plugin must try to detect those, what
means that the developer must think about all potential message-causes prob-
lems. That approach can be considered unreliable and as such it may be better
not to provide such a dedicted state.

4.3.2 Handling of Failures

In spite of the two different failure cases, different handling is needed for them.
The action-based failure cases can and must be handled on the action level. As
transactions abort when a failure occurs, support from the upper “batch layer”
is necessary in order to handle resending batches of messages.

For message-caused failure cases, the offending message must be found and
then be discarded. A complexity here is that while a failure-causing message is
being searched for, an action-based failure might occur. In that case, first the
action-based failure condition must be solved, before the search for the problem
message can continue.
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One approach might be that when the action-layer conveys back an action-
caused failure (SUSPENDED), the batch layer knows that it simply needs to
restart the full transaction (but not start an “invalid message search”). If a
message-based error condition is conveyed back, the batch system can not restart
the full batch. Instead, it needs to enter search mode, where it creates partitions
of the original batch, and calls itself recursively (at least in theory) on each of
the subsets.

Then, the same handling applies until either a failing message has been found
or all messages have been successfully processed. Note that in the recursive
step, action-based failures are recovered by full batch resubmits. This solves
the above-mentioned complexity in a consistent way.

If a binary-search-like method is used to detect failing records5, recursion
may not really be an issue, as the recursion depth is limited to log2 |B| where
B is the message batch.

A message-caused failure can be rooted in one or more messages. One im-
portant question is if it is expected that the failure is caused by a single or
multiple messages. Both is possible, so it is a question of probability. If we as-
sume that it is more probable that a single messages causes the problems, it is
useful to immediately return back to full batch submission of transactions once
a problem-causing message has been identified. But then, if there are multiple
problem-causing messages inside the batch, we may need many more iterations.

If, on the other hand, we assume that it is more probable that multiple
messages cause problems, it may make sense to keep resubmitting only subsets
of the batch. However, then the performance is suboptimal if actually only one
message was problematic. A solution might be to pick a compromise, e.g. first
assume that a single message is problematic, but assume the opposite as soon
as a second message with problems has been found.

A potential algorithm for processing n ≤ |B| messages from batch B is
described below. In the pseudocode, a “processable” message is one that neither
is already committed nor had a permanent failure with this action. The term
“mpf” means “message permanent failure” for this action (this will later be
described in a batch state set).

def submitBatch (B, n ) :
f o r each p ro c e s s ab l e message in

( f i r s t [ at most ] n messages o f batch ) :
c a l l processMessage
i f act ion−caused f a i l u r e :

r e t r y f u l l batch
i f act ion−caused permanent f a i l u r e :

mark a l l n messages as mpf
return

i f auto−commit :
mark commited messages in batch as committed

i f message−caused f a i l u r e :
i f n == 1 :

mark message as mpf
return

else :
c a l l submitBatch (B, n/2)

5This was originally suggested by David Lang.
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c a l l submitBatch (B, n/2)

After submitBatch() has completed, all messages are either committed or in
mpf state.

Note that an action-caused permanent failure occurs if an action-caused
failure can not be resolved with the operator-configured number of retries. It will
never occur if the user configured infinite retries. While an action is suspended,
all calls will result in an action-caused permanent failure. Please keep in mind
that these will be resubmitted to any backup actions inside the action unit, so
the action’s ability to cause permanent failure states is vital for a number of use
cases (backup syslog server, to name just one).

Batch processing inside an action unit thus can follow these strucuture:

Algorithm 1 processBatch(B)
for all action a in action unit do

if execute action only on messages that failed before then
n = |messages in batch in mpf state|
change mpf state back to ready

else
n = |B \msgs with state discard|
change all message states 6= discard to ready

end if
if n > 0 then

call submitBatch(B, n) for action a
end if

end for

Why is it Important to differentiate the failure cases? This text orig-
inates from the mailing list and must be merged in. I provide it in the form it
is, so it will not be forgotten (plus, it conveys the information).

One may think that it is not necessary to differentiate between action-caused
and message-caused failures. However, not doing so introduces subtle issues,
because then you either

A) do not need the batch logic at all (because the action is configured for
infinite retries)

Or
B) you loose many messages if the action is not configured for infinite retries

and you have a longer-duration outage e.g. on a database server. Let’s say it is
offline for a couple of hours, then you lose almost everything in that period

To prevent this, you need two different retry methods.
One may argue that it is hard to differentiate between the two failure cases.

This is correct. Buit I think it mostly depends on the quality of the output
module.

First of all, “mostly” implies that there may be some other cases, where it
really is impossible to differentiate between the two. In that case, I would treat
the issue as an action-caused failure. There are two reasons for this:

1) rsyslog v3 currently does this always and not even a single person com-
plained about that so far. This is an empiric argument, and it does not mean
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it caused problems. But it carries the co-notation that this seems not to be too
bad.

2) If we would treat it as message-caused failure, we would no longer be able
to handle extended outages of destination systems, which I consider a vitally
important feature.

When weighing the two, I know of lots of people who rely on 2), in sharp
contrast to knowig noone having problems with 1). So my conclusion is that it
is less problematic to define an otherwise undefinable failure reason to be action-
caused. Even more so as I assume this problem only exists in the minority of
cases.

Now back to the quality of the output module: thinking about databases,
their API is usually very good at conveying back if there was a SQL error
or a connection abort. So while a SQL error may also be an indication of
a configuration problem, I would strongly tend to treat it is a being message-
caused. This is under the assumption that any reasonable responsive admin will
hopefully test his configuration at least once before turning it into production.
And config SQL errors should manifest immediately, so I expect these to be
fixed before a configuration runs in production. So it is the duty of the output
module to interpret the return code it received from the API call and decide
whether the failure is more likely action-caused or message-caused. For database
outputs, I would assume that it is always easy to classify failures that must be
action-caused, especially in the dominating cases of failed network connections
or failed servers.

For other outputs it may not be as easy. But, for example, all stream network
outputs can detect a broken connection, so this also is a sure fit.

For dynafiles, it really depends on how hard the output module is tries to
differentiate between the two failure cases. But I think you can go great length
here, too. Especially if you do not only look at the create() return code, but,
iff a failure occurs, you do more API calls to find out the cause.

So I think the remaining problem is small enough to cause not too much
issues (and if so, they are unavoidable in any case). In conclusion, the two failure
states are not only necessary, but can sufficiently sure enough be detected.

4.4 Random Topics

I have begun to gather material from the mailing list in this section, because
I feel it may be useful for others as well. Right now, the information is well
hidden in the mailing list archives and there may be value in combining it all
in one place.

Due to the nature of this material, there is no specific organization between
the subchapters and also formatting and language doesn’t deny its rooting in
the mailing list.

4.5 Reliability of Message Dequeueing

A batch is actually dequeued when it is taken off a queue. So if at that point we
have a system power failure (for whatever reason), the messages are lost. While
the rsyslog engine intends to be very reliable, it is not a complete transactional
system. A slight risk remains. For this, you need to understand what happens
when the batch is processed. I assume that we have no sudden, untrappable
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process termination. Then, if a batch cannot be processed, it is returned back
to the top of queue. This is not yet implemented, but is how single messages
(which you can think of an abstraction of a batch in the current code) are
handled. If, for example, the engine shuts down, but an action takes longer
than the configured shutdown timeout, the action is cancelled and the queue
engine reclaims the unprocessed messages. They go into a special area inside
the .qi file and are placed on top of the queue once the engine restarts.

The only case where this not work is sudden process termination. I see two
cases:

a) a fatal software bug We cannot really address this. Even if the messages
were remaining in the queue until finally processed, a software bug (maybe an
invalid pointer) may affect the queue structures at large, possibly even at the
risk of total loss of all data inside that queue. So this is an inevitable risk.

b) sudden power fail ... which can and should be mitigated at another level
One may argue that there also is
c) admin error e.g, kill -9 rsyslogd Here a fully transactional queue will

probably help.
However, I do not think that the risk involved justifies a far more com-

plex fully transactional implementation of the queue object. Some risk always
remains (what in the disaster case, even with a fully transactional queue?).

And it is so complex to let the messages stay in queue because it is complex
to work with such messages and disk queues. It would also cost a lot of per-
formance, especially when done reliably (need to sync). We would then need
to touch each element at least four times, twice as much as currently. Also,
the hybrid disk/memory queues become very, very complex. There are more
complexities around this, I just wanted to tell the most obvious.

So, all in all, the idea is that messages are dequeued, processed and put
back to the queue (think: ungetc()) when something goes wrong. Reasonable
(but not more) effort is made to prevent message loss while the messages are in
unprocessed state outside of the queue.

More reliable can actually be less reliable On the rsyslog mailing list, we
had a discussion about how reliable rsyslog should be. It circles about a small
potential window of message loss in the case of sudden fatal failure. Rsyslog can
be configured to put all messages into a disk queue (instead of main memory), so
these messages survive such a powerfail condition. However, messages dequeued
and scheduled for processing during the power outage may be lost.

I now consider a case where we have bursty UDP traffic and rsyslog is con-
figured to use a disk-only queue (which obviously is much slower than an in-
memory queue). Looking at processing speeds, the max burst rate is limited by
using an ultra-reliable queue. To avoid using UDP messages, a second instance
could be run that uses an in-memory queue and forwards received messages to
the one in ultra-reliable mode (that is with the disk-only queue). So that second
instance queues in memory until the (slower) reliable rsyslogd can now accept
the message and put it into the reliable queue. Let’s say that you have a burst
of r messages and that from these burst only r/2 can be enqueued (because the
ultra reliable queue is so slow). So you lose r/2 messages.

Now consider the case that you run rsyslog with just a reliable queue, one
that is kept in memory but not able to cover the power failure scenario. Ob-



4 PROCESSING 17

viously, all messages in that queue are lost when power fails (or almost all to
be precise). However, that system has a much broader bandwidth. So with it,
there would never have been r messages inside the queue, because that system
has a much higher sustained message rate (and thus the burst causes much less
of trouble). Let’s say the system is just twice as fast in this setup (I guess it
usually would be *much* faster). Than, it would be able to process all r records.

In that scenario, the ultra-reliable system loses r/2 messages, whereas the
somewhat more ”unreliable” system loses none - by virtue of being able to
process messages as they arrive.

Now extend that picture to messages residing inside the OS buffers or even
those that are still queued in their sources because a stream transport blocked
sending them.

I know that each detail of this picture can be argued at length about.
However, my opinion is that there is no ”ultra-reliable” system in life, only

various probabilities in losing messages. These probabilities often depend on
each other, what makes calculating them very hard to impossible. Still, the
probability of message loss in the system at large is just the product of the
probabilities in each of its components. And reliability is just the inverse of
that probability.

This is where *I* conclude that it can make sense to permit a system to
lose some messages under certain circumstances, if that influences the overall
probability calculation towards the desired end result. In that sense, I tend to
think that a fast, memory-queuing rsyslogd instance can be much more reliable
compared to one that is configured as being ultra-reliable, where the rest of the
system at large is badly influenced by this (the scenario above).

However, I also know that for regulatory requirements, you often seem to
need to prove that a system may not lose messages once it has received them,
even at the cost of an overall increased probability of message loss.

My view of reliability is much the same as my view of security: there is no
such thing as ”being totally secure”, you can just reduce the probability that
something bad happens. The worst thing in security is someone who thinks he
is ”totally secure” and as such is no longer actively looking at potential issues.

The same I see for reliability. There is no thing like ”being totally reliable”
and it is a really bad idea to think you could ever be. Knowing this, one may
begin to think about how to decrease the overall probability of message loss
AND think about what rate is acceptable (and what to do with these cases, e.g.
”how can they hurt”).

Different Use Cases As David Lang pointed out, there exist different use
cases for different levels of reliability. Most importantly, there exist use cases
that do not demand very high throughput but rather ultra-realiability of the
queue system. Here, ultra-reliability is just another word for the queue being of
“audit-grade”. Even if the queue provides audit-grade, the overall system is only
then of audit-grade when all other components - most notably the transport
protocols spoken by the inputs and outputs - are also of audit-grade. Most
importantly, this means that an audit-grade system purely based on the IETF
syslog protocol series can not be build.

Used together with truly reliable protocols and senders that block processing
until a final acknowledgement has been received, an audit-grade system can
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potentially build based on rsyslog. To do so, an audit-grade queue subsystem
is required, which is not present in releases less than 4.1.? (most importantly,
v2 and v3 do not provide this capability).

4.6 Audit-Grade Queue Operations

4.6.1 Perquisites

Audit-grade queue operations certain perquisites:

• rsyslog engine is of version 4.1.? or greater

• disk-only queue type

• checkpoint interval set to 1

• queue is configured to not permit losing any messages6

• queue consumer must also be of audit-grade

Only when these prequisites are met, queue operation can be considered of
being audit-grade. Note that when message loss in case of sudden fatal failure
and similar incidents is acceptable, neither disk-only queues nore a checkpoint
interval of 1 is necessary. Such a configuration can also be build with rsyslog
v3, which is up to that level.

Note that in the sections below we describe the implementation in broader
terms. Most importantly, we do not restrict ourselves to disk-only queue storage
drivers. This is important, because it simplifies design and opens the capability
to introduce new, possibly faster-performing, queue storage drivers in the future.

But it is important to keep in mind that a concrete queue is only of audit-
grade if it matches all the perquisites given here, most importantly with the
right configuration.

4.6.2 Implementation Alternatives

Messages, or more precisely objects7, are enqueued by the queue producer (ei-
ther an input module or the main message queue’s consumer). The enqueue
operation is completed only when the message has been successfully accepted
by the queue storage driver. Then and only then the producer is permitted
to remove the object from its own storage system. A rough sketch is given in
algorithm 2.

The dequeue-operation is more complex. We must ensure that each object
stays in the queue until it is finally processed. Hereby, an object is finally pro-
cessed, when processing of it has been completed. Remember that to enhance
performance, objects are dequeued in batches of many. So at any given time,
multiple messages may be processed, but not necessarily have finally completed
doing so. If another worker thread then tries to obtain a new batch for process-
ing, those “in-process” message must not be handed out a second time. Also,

6The queue has several settings that can be used to fine-tune situations in which it may
discard messages intentionally. All of these must be turned off. Most importantly, that means
the producer is blocked for an infinite time if the queue is full.

7While rsyslog deals with messages, the queue is designed to handle any type of thing that
is represented as an rsyslog object. This is considered useful as queues may at some time
contain other things than just messages, so we keep it generic.



4 PROCESSING 19

Algorithm 2 enqueueObject(o)
lock queue mutex
while queue is not ready for enqueue do

wait on queue to become ready
end while
call queue store driver to add o
unlock queue mutex

if a sudden fatal failure occurs during processing, queue operation must restart
at the point of last commit. This means that all “in-process” messages need to
be changed back to “no processed” state and be restarted again. In those cases
the (acceptable) slight message duplication can occur.

In our design, we differentiate between “logical” and “physical” dequeuing of
batches. If a batch is generated for processing, it is logically dequeued — in the
sense that no other batch generating request will be able to receive another copy
of these messages. If no exceptional situation happens, those messages will be
processed and thus can be considered consumed under normal circumstances.

However, actual deletion from the physical queue storage happens only after
the batch is fully processed. At this point, all objects have been acknowledged
by their destinations, which now have the responsibility for the object’s sur-
vival. Consequently, we can delete them from the queue store. This process is
considered the “physical” dequeue of the object.

In order to find some simpler terms, we will call the logical dequeue operation
just “dequeue” and the physical dequeue operation “delete”. This is consistent
with all previous work on rsyslog and thus probably leads to the least surprise
when reading older source code and documentation.

A first idea for a deletion is given in algorithm 3 (remember that O(b) con-
tains all objects within the given batch b, this is not O-notation and should
probably in the future be replaced by something else).

Algorithm 3 deleteBatch(b), first approach
lock queue mutex
for all o ∈ O(b) do

find o in queue storage
remove o and keep queue structures intact

end for
unlock queue mutex

This algorithm is simple, but requires searching the queue store for the ob-
ject to be deleted – a potentially lengthy operation. However, we can improve
the searching process if we know more about the inner structure of batch ob-
jects. It seems appropriate to dequeue objects in queue-sequential order. A
drawback of doing so is that we must prevent other worker threads from trying
to dequeue concurrently. This is not really a drawback. We need to guard de-
queue operations by a mutex in any case, because otherwise internal structures
can not be kept consistent. Practical experience and testing have shown that
many small dequeue operations cause a lot of locking contention and as such
badly affect performance. So it actually is a welcome enhancement to aquire
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the queue lock only once for the whole batch dequeue operation. As dequeing
is a comperatively fast operation, the lock is not held for extended periods of
time.

A first approach to this functionality is shown in algorithm 4. Note that
CmBatch is the configured maximum number of elements inside a batch, i is an
index to address the objects inside the batch.

Figure 3: Queue Store Pointers: boxes represent queue entries, colored boxes
entries with objects. Objects in green are unprocessed, in blue are dequeued but
not deleted and those in gray have already been deleted. White indicates not
yet used entries. Gray objects may be overwritten at any time. Their entries
are actually free, we have used the gray color primarily to indicate there once
existed objects. Each queue pointer points to the next entry to process.

Algorithm 4 dequeueBatch(b)
lock queue mutex
0→ i
while queue non-empty and i < CmBatch do

obtain next obj o from queue store
advance logical dequeue position
put o into batch

end while
unlock queue mutex

A key concept is somewhat hidden in advance logical dequeue position. Each queue point-
ersqueue store is purely sequential, with objects being enqueued at one “end” of

the store and dequeued at the other. Of course, each queue store has only finite
capacity, but we ignore this to explain the overall picture. A queue can be
implemented by two pointers: one that points to the tail of the queue, where
new messages are enqueued and one that points to the head of it, where new
messages are dequeued. The idea is now to duplicate the dequeue pointer and
split it into one for (logical) dequeue and one for deletion. Figure 3 shows
this three-pointer approach. Now, we can simple advance either the dequeue
or deletion pointer, depending on operation, and do not need to find the first
dequeue position inside the queue store. The dequeue pointer always points at
it. This mode can be implemented with all currently existing queue storage
drivers (but the sequential disk driver may need to use a second file handle or
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stream object instead of two pointers).
This makes an efficient implementation of algorithm 4 possible: when it log-

ically dequeues, it just needs to advance the dequeue pointer. So the algorithm
executes in O(n) time where n specifies the number of elements to dequeue with
an upper bound of CmBatch.

Figure 4: Physically Dequeueing Messages: In this sample, we have two
batches. With multiple workers, they may be deleted in any order.

Furthermore, we can also improve algorithm 3: Consider that each batch is
logically dequeued as an atomic operation. That means all batch objects form a
sequential subset of the queue. Figure 4 shows the situation when two batches
have been dequeued. So the costly “find” operation now needs to be carried
out only once at the beginning of the batch. As all other objects are sequential,
once we have found the batch begin inside the queue, we can simply delete the
|b| elements in queue-sequential order after it. So the cost of the find operation
can be reduced from O(|b|) to O(1).

We can even reduce the remaining cost of the find operation. If the batch
to be deleted is right at the queue’s head (as is “B1” in the figure), the “find”
immediately terminates with the first element and incurs no cost at all. The
situation is different if the batch is not at the queue head, “B2” is an example for
that (assuming that “B1” has not yet been dequeued). We would now still need
to search over the objects that are not part of the batch and can then finally
get to the object at the head of the batch in question. For queue storage drivers
that support random access to queue elements, storing a simple pointer to the
batches’ queue head element further improves the situation and enables O(1)
access to the queue element. This is indicated by the dotted lines in figure 4.
Once the head of the queue has been found, two things can happen (depending
on the capabilities of the queue storage driver):

1. the head element can be flagged as “this and next n elements are deleted”
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2. all elements are actually deleted

Note that a mixed form is also possible (and probably useful for our singly
linked list storage driver: there, some n′ elements be actually deleted and the
head element is flagged as “this and next n − n′ elements are deleted”. Note
that in the linked-list case, all but the first elements can be deleted with ease8,
so probably just the head would stay inside the queue. Note that removing
elements off the queue, where possible, is useful because it frees resources. On
a busy system, freeing messages as soon as possible can prevent message loss
(in non-audit-grade setup) or system slowdown. So it should be done when
possible.

If we have a purely sequential queue storage driver (currently the sequential
disk driver), finding and updating the head element is not an option. Even
in this case, we can observe that the batch at the actual deletion pointer will
eventually be submitted for deletion. So a route to take is to create a list of
elements that can be deleted as soon as the physical dequeue pointer reaches
any of these elements. We call this the “to-delete list”. To facilitate processing, to-delete list
this list must be ordered in sequence of dequeing. This information may not be
available from the storage subsystem itself, but it can easily be generated. To do
so, a strictly monotonically increasing counter is kept with each logical dequeue
operation and stored as part of the batch9 An example: let us assume that “B2”
was submitted for deletion first. Then, the head of “B2” is not at the queue’s
delete pointer. As such, no action can be carried out immediately. So the batch
head pointer is stored into a “to be deleted” list. Processing continues. Some
time later, batch “B1” is submitted for deletion. Now, the head pointer is at
the head of the delete list, as such all batch elements are dequeued. Then, the
“to be deleted” list is checked, and “B2” is found in it. Now, “B2” is at the
head of the (new) deletion pointer and can also be removed. So, ultimately, all
messages are physically dequeued. This is more formally describe in algorithm
5. In that pseudocode, we made a simplification by always putting the to be
deleted batch in the “to-delete” list, which then enables us to use somewhat
more generic code to carry out the work.

8It can be considered to change from a singly-linked list to a doubly-linked list, if the
benefit outweighs the extra effort required.

9As this must be done via the usual computer-implemented modular arithmetic, we must be
careful that we do not see repetion of values because of overflows. Each day has 60 ·60 cot 24 =
86, 400 seconds (ignoring the subleties of UTC). Now let’s assume that we have a moderately-
busy system with 1,000 messages per second. We further assume, to be on the save side, that
each message is processed inside its own batch. So we have 86, 400, 000 batches per day. If
we now use a typical 32-bit integer for generating the batch IDs, we the unique range will be
used up after

232

8640000
≈ 497 days

days of uninterrupted rsyslog operation. While this sounds somewhat save, it goes down to
approximately 10 days of messages are submitted at rate of 50,000 messages per second (which
is high, but not unheared of). So it is strongly advised to use 64 bits, which we consider to
be save, because for our 1,000 messages per second the range would be exhausted only after

264

8640000
≈ 2.135 · 1011 days

which equals approximately 584, 500, 000 years. So even at a rate of one million messages per
second, the range would be sufficient for over 500,000 years of continuos operations – that
should be far sufficient.
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Note that there is a price to pay for deletions via the “to-delete” list: if a
sudden fatal failure happens during processing, the set of duplicate messages is
increased. For example, if a fatal failure happens after “B2” has been fully
processed and scheduled for deletion, but before “B1” is also submitted for
deletion, “B2” will be reprocessed after recovery. This would not happen if
“B2” would have been removed from the queue.

Algorithm 5 deleteBatch(b)
Require: queue mutex is locked by caller

enqueue b.head, |b| in “to-delete” list D {‘}‘to-delete” list must be in order of
logical dequeue
while D.head = Q.deleteP tr do

for |b| elements do
delete element at queue head
move q.deleteP tr

end for
remove head of “to-delete” list

end while

Warp-Up of Queue Delete Operations When evaluating which route to
take, the “to-delete” list approach looks elegant for all cases. The negative side
effect of potentially increased message duplication currently does not even ex-
ist: today, the sequential disk queue storage driver permits only a single worker
thread and thus there always will be only one thread at a time. Even if we re-
move that limitation, message duplication could not be avoided, as stated in the
algorithm description above. What remains are the other queue storage drivers.
However, they operate in-memory, so message duplication will not happen sim-
ply because all messages will be lost on sudden fatal failure. The advantage
of limited message duplication only exists in the so-far hypothetical case of a
random-access, audit-grade disk queue storage driver. Thus, the decision could
be postponed unless that happens (if it ever does).

From a code complexity point of view, the “to-delete” list approch is def-
initely advantagous. Not only because of the reduced number of algorithms
required. We also do not need to maintain unique batch IDs and all the logic
associated with them.

The other aspect to look at is memory consumption. Assuming that we
delete the actual objects, just not their containers inside the queue, extra mem-
ory consumption is not really that worse. More importantly, currently only the
linked-list queue storage driver can benefit at all, because it is the only driver
capable of deleting queue entries in mid-queue. All others, including the array
memory driver, do not have this capability.

From a performance point of view, the “to delete” list approach looks ap-
proximately as good as the others, with some mild better performance for some
storage drivers for a non-“to delete” list approach. This can be mitigated, espe-
cially if the potentially somewhat-costly maintenance of the “to-delete” list is
slightly optimized and the algorithm actually checks if the to be deleted batch
is right at the queue’s delete pointer position. The improved code simplicity,
together with current CPU’s code caching, may even result in an otherwise not
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expected speedup.
In conclusion, we will implement the “to-delete” list approach on the queue

layer (above the queue storage drivers). However, we will leave the window open
to permit overwriting it with queue storage driver specific functionality. How
to do this will not be specified now, as there is currently no need and we do not
even know if there ever will be. However, we retain the discussion on the various
modes as well as the relevant algorithmic discussions and data structurs inside
this paper so that it is readily available should need arise. We also think this is
important so that everybody later knows that the decision was made based on
good argument and not by accident (we consider this useful in another design
enhancement attempt).

Processing Sequence Looking at the processing sequence, we notice that
always objects are dequeued, then processed and then deleted. Then, the whole
process starts again. In particular, this meanss that after the previous batch
has been deleted, the next batch will be dequeued. Now consider that we need
to have exclusive access to the queue for both of these operations. As such
it seems natural to combine this into a single step, further reducing potential
locking contention.

Note that a side-effect of this approach is that messages can be deleted only
when a new batch is dequeued. With current design, this means that at least
one message must reside inside the queue. Otherwise, the last batch will not be
deleted. However, this something that can (and must!) be solved on the queue
worker layer, in that it deletes a batch when the queue is empty.

This leads us to the implementation of dequeueBatch() and deleteBatch()
shown in algorithms 6 and 7. Note that l is a flag variable that indicates if the
queue is already locked.

Algorithm 6 dequeueBatch(b): final version
lock queue mutex
call deleteBatch(b, 1)
0→ i
while queue non-empty and i < CmBatch do

obtain next obj o from queue store
advance dequeue position
put o into batch

end while
commit queue changes to storage system (if needed, e.g. fsync())
unlock queue mutex

4.6.3 Queue Stores

Currently, rsyslog supports three different types of queue store drivers:

• memory array

• memory linked list

• disk sequential file
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Algorithm 7 deleteBatch(b, l): final version
if queue not yet locked (test via l) then

lock queue mutex
end if
for all objects o in b do

destruct o
end for
enqueue b.head, |b| in “to-delete” list D {‘}‘to-delete” list must be in order of
logical dequeue
while D.head = Q.deleteP tr do

for |b| elements do
delete element at queue head
move q.deleteP tr

end for
remove head of “to-delete” list

end while
commit queue changes to storage system (if needed, e.g. fsync())
if queue not yet locked (test via l) then

unlock queue mutex
end if

They all provide an abstracted sequential queue store as shown in figure 3
on page 20.

Obviously, some differences exist. Most importantly, the disk sequential
file driver does not support more than one queue worker thread (in order to
prevent excessive disk activity and the subtle issues with rewriting parts of
sequential files). So if this driver is used, the queue automatically limits itself
to a maximum of one worker thread (even if user configuration settings

Different queue store drivers have different properties:
array linked list seqential file

pointer type integer index memory address file number and
offset within file

physical access random random sequential
remove middle no yes no
elements
access to n-th O(1), index: O(n), follow not supported
element n mod CmMsg pointer links
speed fastest fast slow
mem overhead large some almost none
reliability reliable reliable audit-grade10

4.6.4 Implementation

The actual implementation will be based on algorithms 6 and 7. The rsyslog
v3 queue storage driver will be extended one additional method, which per-
mits non-destructive dequeueing of elements. As such, the driver now has the
qAdd(), qDeq(), and qDel() entry points (together with the usual construction
and destruction entry points). The queue drivers must support the three point-
ers for enqueue, dequeue and delete. The “to-delete” list will be maintained on
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Figure 5: Logical Message States during Queue Processing

the upper queue layer (and not the queue driver layer). This functionality will
be optimized so that if a batch to delete is right at the queue’s delete pointer,
it will immediatly be deleted and not be sent to the “to-delete” list. This is
especially important with the sequential disk driver, as the condition here al-
ways is true (and thus the driver can pretend this in the relevant API without
even comparing any pointers – what would otherwise quite complicated in this
driver.

The full list of the queue store driver interface is:

qConstruct Initializes the queue store.

qDestruct Destructs the queue store, including all messages that may still
be present in it.

qAdd Enqueue a new object into the queue. Note that this entry point must
only be called when the queue is non-full.

qDeq Non-destructive dequeue of the object at queue head. Dequeue pointer
is advanced.

qDel Delete the object at queue head. Delete pointer is advanced.
Disk queue store drivers may support additional internal functions. However,

they should not be exposed to the rest of the queue subsystem.
Figure 5 shows a logical message state diagram during queue processing.

There is no actual state variable, but rather the processing flow demands these
state. Note that the state transition from “dequeued” to “queued” only hap-
pens after a fatal failure and a successful system recovery. So this is a rather
exceptional case.

Another subtle issue is that we now need two different queue size counters:
one for seeing when the queue is physically full and one for detecting when there
are no more messages to be dequeued.

As a simplification, support for ungetting objects can be removed (as objects
never leave the queue), what also means that cancel-processing is probably less
complex.

Sequential Disk Queue Store Driver The enequeue, deqeueue and delete
pointers must be implemented via three stream objects. Most importantly, the
dequeue stream must be configured not to delete files when it closes them. A
side-effect of this implementation is that data is actually read twice, once to
actually obtain it and a second time to delete it. This could only be avoided by
an overall redesign on how the disk queue works.
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4.6.5 Checkmarks

The following things need to be verified in the actual implementation.

Queue Full Is it possible to set an infinte timeout on queue full condition
during enqueue? If not, we must provide it.

Termination the Queue If we cancel a worker, we need to start from the
physical dequeue pointer and pull everything that is not scheduled for deletion
- NOT from the logical dequeue pointer.

Failed Messages If a message fails on a detached action queue, no backup
processing is available (because we detect the failure at a point where the mes-
sage is already considered processed from the main queue’s point of view. We
need address this and have two options:

I see two approaches at handling this:
a) we enable an action to configure a backup file that shall receive all message

permanent failures. This is simple (not only to implement but to configure and
understand)

b) we push the failed message back to the main queue, but with an indication
that it failed in an action. This is harder to implement and most importantly
harder to understand/configure, but more flexible

5 Network Stream Subsystem

The idea of network streams was introduced when we implemented RFC5425
(syslog over TLS) in 2008. The core idea is to encapsulate all stream-oriented
network data transfer into a single transport layer and make the upper layers
independent of actual transport being used. This is in line with the traditional
layer approaches in communication systems.

Under this system, the upper layer provides plugins to send and receive
streams of syslog data. Framing is provided by the upper layer. The upper
layer itself is integrated in input and output plugins, which then are used to
provide application-level syslog message objects to and from the rsyslog core. To
these upper layers, the netstream layer provides reliable and sequenced message
delivery with much of the same semantics as a usual TCP stream.

At the netstream layer, we have a small set of generic classes, which are used
for setup of the drivers and driver parameters. This is a very thin layer, mostly
a wrapper. Once an actual lower-level netstream driver has been loaded, all
parameters are passed through to it.

Please note that both in theory and practice netstream drivers may call
back into different netstream drivers. For example, the GnuTLS RFC5425 driver
loads and calls back into the plain tcp driver, simply because that driver provides
part of the required functionality and there is no point in re-implementing it for
GnuTLS.

The netstream driver layer does not only provide read and write calls but
supports i/o multiplexing. To do so, it offers an interface that follows select()
semantics. That permits an upper-layer comonent to request being blocked
unless some data arrives. Note that due to the subleties in TLS processing, the
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Figure 6: Objects at the Network Stream Layer
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upper layer may be awoken while there is no upper-layer work to do. This will
properly be indicated by the netstream subsystem, is not an error and must be
accepted and poperly handled by the upper layer.

Using the nestream layer, we do not need to modify the input and output
plugins while at the same time we can add additional transport providers. One
weak spot in this design is the current configuration process. With the current
system, we need to provide one configuration statement per driver property and
we need to hardcode this. So if a new driver would require new properties, we
still would need to modify the upper layers. This is unfortunate, but the current
config system does not provide for any better way to handle the situation. Once
we are able to create a new config system, we will address this by providing the
ability to pass a string of parameters onto the driver, which will then have the
ability to parse its content. So once we do this, we need to modify the driver
interface, but the end result would be a simlification.

So far, only drivers for GnuTLS and plain tcp are provided. However, during
the design of the layer we also looked at openssl and Mozilla Network Security
Services as well as kept an eye on the needs of Kerberos. In theory, it should
not be a major problem to write drivers for these systems (but it most probably
still is a lot of work to do).

A final note on Kerberos: in order to keep compatible with previous protocol
handling and due to constraints in testing environment and knowledge, we still
support Kerberos not via the netstream layer but via special extension into the
input and output modules. That, too, is unfortunate, but given the current
resources at hand, there is no alternative to handling in that way. We would be
very interested in moving over Kerberos to a netstream driver and any volunteer
would be very welcome.

6 Future Development

This section covers topics that can not currently be developed, but where im-
portant thoughts came up in discussions. For obvious reasons, the section has
brainstorming character.

6.1 Lock-Free Queuing

On a very busy system, lock contention can limit performance. We should
investigate ways to apply lock-free algorithms inside rsyslog. It is believed that
at least for some scenarios, lock-free algorigthms can be applied with great
benefit. To do so, we should introduce new queue modes, which will use very
different semantics from what is described so far for the queue engine. Most
importantly, in lock-free mode we will have limits on the number of producers
and we will most probably not be able to guarantee audit-grade processing. The
later is not a problem, because there are ample use cases that do not require
audit-gradeness.

6.2 Audit-Grade High Performance Queue Storage Driver

An audit grade driver must ensure that no message is lost, but should also be
able to handle large workloads. The sequential disk driver does not support the
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later.
An additional disk driver is envisioned with the properties like the linked

list driver, but a reliable on-disk store. In particular, random access to queue
elements is desired, which requires an addressing capability.

A potential implementation requires a pre-formatted file. That file is orga-
nized in pages of n bytes (e.g. 1K). The page index is used to address a queue
item. If an item fits into 1K, it uses one page. If it is larger than 1K, consequtive
pages are used to store the element. A page header must be present to indicate
how many pages a single element is made up of.

It may be noted that we could even improve performance by keeping part of
the data in-memory. For audit-gradeness, it is required that upon enqueue the
message is written to disk and only after final processing it needs to be removed.
However, it is not forbidden to keep the same message in main memory. That
way, the logical dequeue operation could be done one the in-memory represen-
tation. Only the physical dequeue would need to write to disk again. As such,
we save one disk read out of three writes and one read otherwise required (so
one can roughly say that we save one third of disk operations.

Note that due to potential multi-pages messages we can not directly address
individual elements, but we can reliably and quikly address elements whom’s
address we know (learned, for example, during logical dequeue). This is similar
to the organization of the in-memory linked list. Actally, such a store is a linked
list implementation, just that memory is allocated on disk instead of in main
memory.

To further improve speed, object representation could be zipped before being
written to a page.

File Layout Page 0: control structures (most importantyle queue pointers)
(can make sense to store in a separate file, which could be moved to a dedicated
disk subsystem - can potentially greatly reduce disk seek times). Page 1 to n:
actual object storage

Algorithms 8 and 9 show how records are enqueued and deleted. Note that
the delete part does not even need to read back the record. If we keep at
last some records in-memory, the performance cost of ultra-reliable mode can
actually comparatively low. Note that we may not even really need to commit
data to the storage system in “AuditGradeStoreDelete()”, because if a fatal
failure occurs at this point, at worst message duplication may happen, what we
have considered to be acceptable.

Algorithm 8 AuditGradeStoreEnqueue(o)
Require: queue mutex is locked by caller

write o to current enqueue location
update & write queue structures [page 0]
sync all files touched
store o in an in-memory structure (or a cache)
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Algorithm 9 AuditGradeStoreDelete(o)
Require: queue mutex is locked by caller

update queue dequeue pointer & write queue structures [page 0]
sync all files touched


